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Domain walls in random field Ising magnets: wetting
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aLawrence Livermore National Laboratory, 7000 East Avenue, L-415, Livermore, CA 94550, U.S.A.
bHelsinki University of Technology, Laboratory of Physics, P.O.Box 1100, FIN-02015 HUT, Finland
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Abstract

Domain walls in random-field Ising magnets can be investigated in groundstates into which walls are induced by
prepared boundary conditions. We outline recent progress, and new results on (domain wall) wetting in random
field systems. This is studied in fixed disorder configurations in the presence of an external field, which is varied.
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The random field Ising model (RFIM) is an ex-
ample of two competing mechanisms: the local spin
couplings favor ferromagnetism (FM) while vari-
ations in the random fields favor disorder. In two
dimensions (2D) Aizenman and Wehr proved the
breakdown of long-range FM order in then ground-
states [1], while the three-dimensional case is still
studied intensively [2,3]. The nature of the ther-
modynamic state reflects the domain wall (DW)
properties: in the FM state the domains are “stiff”,
i.e., they have an extensive DW energy.

Such properties can be studied by exact numer-
ical computations by mapping the finding of the
RFIM groundstate (GS) into a well-known opti-
mization problem [4]. Domain walls are achieved
by imposing suitable opposing boundary condi-
tions. Recent calculations have affirmed in 2D the
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logarithmic correction to the DW energy and the
asymptotically paramagnetic (PM) GS character
[5,6]. The domain walls in the effective FM are
not strictly self-affine, and e.g. the roughness has
an exponent of ζ ' 1.2. Respectively, the energy
fluctuations (GS energy distribution width) do not
obey the expected exponent relation θ = 2ζ+d−3
for self-affine DWs or directed polymers with RF
disorder [7,8].

The implications of the exponents extend be-
yond comparisons or tests of analytical theories, to
e.g. how the roughness behavior of DW’s manifests
in the wetting of random field magnets. The mean-
field theory for random systems, by Lipowsky and
Fisher [9], relates the mean height of the domain
wall z to the external, binding, field H via z ∼
H−ψ, where ψ = (2− ζ)/ζ.

Here we present exact numerical simulations
with an imposed DW and an external field H.
Figs. 1(a) and 1(b) illustrate how the wetting
takes place with fixed disorder as H is varied (the
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Fig. 1. (a) Examples of successive DW configurations

(∆ = 0.5). Different gray colors denote “up” domains at
different H values. (b) Magnetization of the full system

depending on the mean height z vs. the external field H

with ∆ = 0.3 for 5 different random configurations. The
system size L2 = 2402 and Gaussian disorder (width ∆).

systems are effectively FM). The “dynamics” con-
sists of jumps of various sizes, even macroscopic
ones, like in random-bond wetting [10]. This fol-
lows from level-crossing. The Hamiltonian has a
piecewise continuous derivative w.r.t. H in each
disorder configuration.

The effective value of ζ can be now figured out
from ψ. If e.g. ζ = 1 ⇒ ψ = 1. For ζ = 1.2 ⇒ ψ =
1.5. Fig. 2 shows both the interface and roughness
behavior with ψ = 1.5. Thus the roughness expo-
nent from wetting agrees with earlier direct DW
computations.

To summarize, combinatorial optimization is
particularly useful for the studies of DW’s. The
effective ζ > 1, manifesting the super-rough be-
havior of DW’s here and the break-down of true
scale invariance, hints about the character of the
competition between elastic energy and random
field fluctuations, for example in the 3D case.

This work was partly performed under the aus-
pices of the U.S. DOE at the UC/LLNL, contract:
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Fig. 2. The scaling of the disorder-averaged interface dis-

tance, indicating the value of ψ and the interface rough-
ness, (a): L2 = 1802 (b): Lz = 200, L = 1000.

W-7405-Eng-48.
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